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1. Abstract 

 

Course inSight integrates a course catalog with natural language processing and cloud 

database to provide recommendations based on the concepts extracted from a given course, 

revealing meaningful connections between courses that are not available through existing 

technologies. This paper justifies the rationale behind the project, narrates the design process, and 

discusses implementation details and possible improvements.  

 

2. Introduction 

 

Course election is an integral part of students’ educational experience. It involves decision 

makings that can lead students to new realms of knowledge and success in future careers. While 

school registrars compile comprehensive catalogs each year to aid the process, students, however, 

are often overwhelmed by the enormous amount of course offerings, vexed by the meaning of 

course titles, biased by their peers’ word of mouth, and suffered from outdated and impersonal 

tools. When well-informed course election becomes impractical, students might simply elect 

courses to raise their GPA, reduce workload, and fulfil requirements for graduation. Dartmouth 

College, for example, requires students to take classes in a distributive manner, covering nearly all 

aspects that the college has to offer. However, this liberal arts ideal is undermined by its execution. 

It is well known that students have compiled a “lay-up list” [1]—a list of distributive classes where 

nearly everyone gets an “A” without doing much work. In the meanwhile, fraternities at Dartmouth 

have allegedly compiled a database of all previous exams for some courses so the members can 

easily pass exams without “wasting” their time in libraries. Although these problems can not all 

be contributed to an ineffective course election system, it is justified to trace them to the very 

beginning of the process, course browsing, where we can possibly take proactive measures to 

encourage well-informed course election.  
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3. Existing solutions 

 

The surveyed institutions have strikingly similar course browsers. Stanford [2], MIT [3], 

UPenn [4], Dartmouth [5], Princeton [6], Brown [7], and Columbia [8] all share the same design—

a digital catalog indexed by department names or field of studies, searchable by keywords, 

instructor name, course title, and course period. Massive Open Online Course platform such as 

Coursera [9], Udacity [10], MIT OpenCourseWare [11], and Stanford Online [12] offer more 

features including multimedia and social network widgets. All of the aforementioned course 

browsers, however, organize courses in the structure of a list, which is what “catalog” by definition 

does. In most cases, the course browser is simply a digitized version of the printed catalog. To 

summarize, we point out four dangerous assumptions made by the existing solutions:  

 

1. The browser assumes that each user has already come up with a goal to search for, 

whether it’s a keyword, a professor’s name, or a course title. The database is indexed 

and structured with these search goals in mind but if a user would literally like to 

“browse” courses, the tool would be of no help. 

 

2. The browser assumes a linear structure of courses within a department. In most cases, 

the default view is sorted by course numbers, which supposedly reflects the progression 

in difficulty and the deepening and narrowing of topics. This assumption breaks when 

a department organizes its courses according to its own rule. Take the Computer 

Science department at Dartmouth for example, the bulk of the courses are divided into 

three sections: theories (30-49), systems (50-69), and applications (70-89). In many 

cases, students would take a higher numbered course before a lower numbered one. 

Sorting these courses into a list according to their numbers would only mislead students. 

 

3. The browser assumes that each department is independent of others. Although many 

tools nicely present courses offered by one department, they have to display redundant 

language for courses that are “cross-listed” under two or more departments, let alone 

the waste of storage and the difficulty in maintaining consistency. As we see more and 

more interdisciplinary studies and cross-departmental collaborations, the organization 

of courses by department will soon be outdated. 

 

4. The browser assumes that students are the only users and that information flows strictly 

from faculty to registrar and then to students. What if faculty would like to get feedback 

on their posted courses? What if administration would like to measure faculty’s 

performance? What if students would like to know what their peers think of a course? 

Admittedly, each school has its own feedback system but instead of asking users to 

take surveys and wait for the analysis to surface after much delay, the data could be 

collected as soon as the course browsing or shopping period begins and be analyzed 

and presented in real time. 
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A successful solution therefore will have to address the following challenges: 1) providing 

a guidance for course browsing 2) organizing courses to reflect internal relationships rather than 

by numbers 3) presenting courses across departments and disciplines 4) collecting, analyzing, and 

presenting user behavioral data. 

 

4. Design 

 

A course browser is essentially a visualization of course-related data. Hence, we tackle the 

design problem with a data-driven mindset—what aspects of the data should we present, and how 

to present them effectively? The only data source we can leverage is Organization, Regulations, 

and Courses (ORC) website [5], which has a catalog of all the courses. On ORC, each course is 

archived into a single web page with a URL. The page contains the title of the course, its number, 

a paragraph of description, the name of the instructors, the Distributive and/or World Culture 

requirements it satisfies, and the term and time period it is offered. The ORC itself does a decent 

job presenting these fields of data but in order to guide a user through the massive number of 

courses and visualize connections between them, we must “understand” what each course is about. 

Once we “understand” the concept of each course, we can establish relationships between courses 

sharing similar concepts. We may even allow a user to browse directly from a concept. Therefore 

we treat the title of the course and its description as our primary source of data, from which 

concepts can be extracted. The goal has now become the visualization of concepts for each course, 

and the visualization of concept-based relationship between courses. 

 

To further develop this idea, the browser should present two kinds of entities, courses and 

concepts. Things become interesting when there are two or more of these entities on stage: a course 

may cover a few concepts; many courses may share the same concept; two courses may cover a 

very similar set of concepts; some concept is covered by many courses; some courses cover a broad 

range of concepts... All these seemingly complicated relationships can be reduced to one simple 

syntax: “course S covers concept T”. If we model a database after this syntax, we can answer all 

the questions of interest by a few database operations. For example, to find the courses that are 

related to S1, we have the following algorithm: 

 

1. Find all the concepts that S1 covers. 

2. For each of the concepts, find all the covering courses. 

3. For each of the covering courses, if it has not appeared before, add it to the result and 

store the relevance value, otherwise, add the relevance value to the previous result. 

4. Sort all the results in descending order of their aggregated relevance value.  

 

Another criterion for relating one course to another is by prerequisites. The ORC displays 

the prerequisites for any given course in the format of “course S1 uses S2 as a prerequisite”, but 

does not show what courses use the given course as a prerequisite. Since prerequisites are “many 
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to many” relationships, the query from either direction would work. For example, “select all 

prerequisites where S1==Sx” yields all the courses that use Sx as a prerequisite. On the other hand, 

“select all prerequisites where S2==Sx” yields all the courses that are used by Sx as a prerequisite. 

 

 

With the underlying data model, we specify the following key features for the browser: 

 

1. The browser shall handle queries on courses using traditional parameters i.e. title, 

description, and course number. 

2. The browser shall present related concepts for any chosen course. 

3. The browser shall present courses covering any chosen concept. 

4. The browser shall present relating courses based on prerequisites or shared concepts. 

 

 The most intuitive visualization of these features would be a graph where each course or 

concept is represented as a node and each relationship between a course and a concept or between 

two courses is represented as an edge. This design is effective only when the number of nodes is 

small. As the number of nodes increase, the network will become so dense that it’s neither 

computationally affordable nor visually appealing (Figure 1). 

 

 
Figure 1 – Network Graph1 

                                                
1 Image credit: Image Credit: http://tallytree.com/wp-content/uploads/2012/07/D3_force_directed_layout.png 
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To address this issue, we propose a dynamic hierarchical data structure where the root node always 

represents the course or concept of interest. When the user navigates from a course to a concept, 

or vice versa, or from one course to another, the root node is updated to reflect the change. With 

this technique, we are able to limit the depth of the hierarchy to a constant number, in which case 

a sunburst graph (Figure 2) would be the ideal visualization. 

 

 
Figure 2 – Sunburst Graph2 

 

5. Implementation 

 

5.1. Data Collection 

 

The ORC organizes the URL’s of the courses into a tree structure with a depth of 

3—the home page being the root, each department being a child of the root, and each course 

being a child of a department. However, there are exceptions for departments with sub-

departments (e.g. AMEL), and for departments further dividing courses into sections (e.g. 

ENGL). Let us denote the following string with [rooturl] 

“http://dartmouth.smartcatalogiq.com/en/2014/orc/Departments-Programs-

Undergraduate/”, then there are three possible formats for the URL of a course: 

1. [rooturl]/[course number] 

2. [rooturl]/[sub department name]/[course number] 

3. [rooturl]/[section name]/[course number] 

                                                
2 Image credit: http://stackoverflow.com/questions/24438313/stop-zooming-or-folding-in-sunburst 
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We can simplify the URL’s into one format: [baseurl]/[course code] where [baseurl] has 

the three variations above. Given that there are only 84 unique [baseurl] strings in ORC, it 

is faster to collect them by hand than by writing, debugging, and running a script. Once we 

obtain the [baseurl], we can use a crawler to visit each base URL and extract course URL’s 

from the web page. With URL’s for all the courses, we then use another crawler to 

download the pages and extract the course number, title, prerequisite, time period, and 

professor from the HTML file and store them in JSON format. Now the data is ready to be 

loaded into a database. The complete data collection script is listed in the appendix. 

 

5.2. Database 

 

We use Parse [13] to host the database. Parse is an integrated platform for web 

hosting, database, and cloud computing. We will discuss its cloud functions in later 

sections. For our application, we maintain 4 tables on Parse:  

 

1. Course: each row stores information about one course: title, number, URL, time 

period, professor, distributive requirements, and description.  

 

2. Prerequisite: each row specifies a dependency—one course is used by another as 

a prerequisite. We use the pointer data type provided by Parse to link the two 

courses in each prerequisite relationship to their corresponding rows in the Course 

table. 

 

3. Concept: it stores the concepts relevant to each course, along with a relevance 

value. The higher the value, the more relevant the concept is. 

 

4. User Activity: it stores the user behavioral data. It will be discussed in section 

5.4 and 5.6. 

 

Parse provides a comprehensive JavaScript API for adding and updating content in a 

database. To populate the Course, and Prerequisite tables, we use a node.js application to 

iterate the courses and prerequisites in the previously exported JSON file and uploads them 

to the database with the JavaScript SDK. The other two tables will be populated in later 

steps. The complete upload script is listed in the appendix. 

 

5.3. Concept Extraction 

 

Concept extraction is a well-researched topic in natural languages processing 

(NLP). We decide to use AlchemyAPI [14], an online NLP SaaS that parses raw text into 

concepts. Note that the NLP algorithm is not perfect so not all concepts are truly relevant 

to a course. We will have to use “relevance” value to filter away irrelevant results. When 
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finding a relevant course, we require that two courses share one or more concepts the 

relevance values of which add up to a certain threshold. There are 2228 courses in ORC. 

If we were to find all courses that share concepts with a given course, we would have to 

issue 2227 API calls, which would hit the API cap, not to mention the time it would take 

to process them. The solution is preprocessing all the courses to have their concepts 

extracted and stored in our database on Parse. Again, we use a node.js application to iterate 

the courses in the previously downloaded JSON file, extract the concepts with an npm 

package for AlchemyAPI, and uploads the results onto Parse using its SDK. 

 

5.4. Cloud Functions 

 

In a typical JavaScript web application, the client, usually a web browser, is 

responsible for computing the data once they are fetched from a database. There will be a 

significant penalty on performance when the desired results are only a few rows but the 

computation requires the knowledge of the entire table, or worse still, two or more tables. 

For example, when we compute the most viewed courses, we have to aggregate user 

activity counts on the keyword “course” and rank the results in descending order of the 

aggregated counts. Although we could let the database alone handle this complicated query, 

it would be very difficult to run customized filters on top of it. But if we download the 

entire user activity table to client side and does the computation, the download would take 

too long. The cloud function combines the advantages of the two by running JavaScript on 

the database server. To get the most viewed activities, we simply call the cloud function 

through Parse API, and the result will be returned instantly. 

 

Another use of the cloud function is event handling. Similar to what a “trigger” 

does in traditional database, a cloud function can be triggered when a row is added or 

updated. In our application, a cloud function is executed after each CREATE or UPDATE 

event in the Prerequisite table. The function sets a pointer from a course in Prerequisite 

table to its counterpart in the Course table. We also use a cloud function to create a 

lowercased copy of a concept when it is added to the database to facilitate search. 

 

5.5. User Interface 

 

We built the front end of this application with D3.js [15] framework. D3.js provides 

a set of visualization templates that can be directly applied to arrays of objects in JavaScript, 

which in our case can be easily fetched from Parse using its SDK. As we previously 

discussed, we use sunburst graph to visualize the dynamic hierarchical structure. Two 

different views will be covered: 
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1. Course View (Figure 3) 

 

 
Figure 3 – Course View 

 

In Course View, the center of the sunburst graph is set to the course of 

interest. Surrounding the center are four sections: 1) “Related”: courses that are 

related to the course shown in the center. The relationship is determined by shared 

concepts. 2) “Topics”: concepts extracted from the course shown in the center. 3) 

“Prerequisite”: courses that should be taken prior to the course shown in the center. 

4) “Next Steps”: courses that use the course shown in the center as a prerequisite. 

The sunburst graph displays the information of interest in a minimalistic view—

only course numbers or concept names are displayed. To compensate the lack of 

details, we set up a side panel to display the full length information when user 

mouses over certain areas on the sunburst graph (Figure 4). When user clicks on a 

course or concept, the graph will be updated to the corresponding view with the 

new course or concept in the center. 
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Figure 4 – Course View with side panel 

 

2. Concept View (Figure) 

  

The Concept View is similar to the Course View except that the courses 

related to a concept is displayed directly around the central circle. When there are 

many courses covering a concept, the surrounding sections will become very 

narrow (Figure 5).  

 

 
Figure 5 – Concept View 
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Again, a side panel is used to display full length information when user mouses 

over a course but in order to minimize eye movement, we display the enlarged 

course number in the center of the sunburst, a design trick that has already been 

adopted in the Nest Learning Thermostat [16].  

 

The application features a search box on the top of the screen in which users can 

search either a concept or a course. Powered by typeahead.js [17], the search box updates 

results as the user types. We treat the keywords as part of a course title, a course number, 

and a concept all at the same time and display all of the results on the same page so the 

interface will not confuse the user with complicated search options (Figure 6).  

 

 
Figure 6 - Search Results 

 

The homepage of the application is composed of the search box previously 

described and two word clouds taking up the rest of the screen (Figure 7). When the user 

mouses over a course or a concept, the word is enlarged as a visual feedback of selection. 

Once clicked, the word will take the user to the corresponding Course View or Concept 

View. The word clouds are generated with a D3.js plug-in using the most popular courses 

and concepts. The popularity is determined by recorded user activity, which we will discuss 

the next. 
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Figure 7 - Homepage 

 

5.6. Telemetries 

 

Two kinds of behavioral data are collected. Search and exploration. When a user 

transitions into a course or a concept from the search box, a search activity is logged along 

with the keyword that is used in the search and the time of event. If the transition originates 

from a word cloud or from an existing sunburst graph, an exploration activity is logged 

along with the course name or the concept name and the time of event. On one hand, this 

unobtrusive technique of data collection has completely freed the users from filling out 

forms and revealing private information. On the other hand, the data collected is limited to 

crowd behaviors. If individual behavior needs to be collected, we will have to establish 

user profiles. 

 

6. Conclusion and Future Work 

 

This project is a comprehensive exercise of data mining strategies, database design, 

cloud computing, natural language processing and UI/UX designing. The outcome is a user 

friendly web portal hosted at dartmouth.parseapp.com. The portal helps students find 

courses based on their interests and achieve insights in how one course will lead to another. 

Thanks to cloud hosting and cloud computing technologies, this project can be deployed 

without the requirement of a dedicated web server or database host. The user interface is 

loosely coupled with the backend by API calls so it adapts well to other course databases. 

We identify the following aspects of the project that can be improved by future work. 

 

 

http://dartmouth.parseapp.com/
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6.1. User Profiling 

 

In the current version of the application, each user remains anonymous throughout 

the whole session. Establishing a profile for each user would benefit not only the users by 

enabling browsing history, bookmarks on favorite courses, and sharing findings on social 

network, but also the faculty and administration by providing individual and yet 

anonymous behavior for further analysis and revealing patterns and trend during course 

election. Above all, telemetry with profiled users is more accurate and representative. To 

establish user profiling, the database needs to be upgraded to include a user table. The 

application needs to include a login and logout function, as well as session management. 

An ideal solution would integrate into a Single Sign-on system (SSO) that a school 

usually provides. The benefit of using SSO is 1) hassle-free identity management because 

profiles can be pulled directly from school directory 2) better access control because the 

school has full control over what content can be viewed by student, faculty, and 

administration. 

 

6.2. Database Auto-maintenance 

 

As described in 5.1 and 5.2, the Course and Concept tables are populated by one-

time data crawled from ORC. Whenever ORC updates, the crawler has to run again, after 

which the tables have to be dropped and re-populated. The user activities may also 

introduce inconsistency if an old course in the activity no longer exists in the new ORC 

website. The proposed solution is running a crawler that periodically check for updates on 

ORC. If a course changes, a series of actions are triggered to maintain the integrity of the 

data. The auto-maintenance can be implemented with a combination of crawler scripts for 

downloading course pages, node.js scripts for finding changes and uploading changes, and 

Parse cloud functions for maintaining integrity. 

 

6.3. Search Filters 

 

Existing course browsers usually support various filters to help users narrow down 

the results. ORC website, for example, allows users to filter by term, time period, 

department, distributive requirement, and world culture requirement. The major challenge 

in implementing these filters is building a robust HTML parser that can handle various 

mistakes on ORC when converting HTML into numerical or enum types. Even with a 

perfect parser, the language on ORC is too haphazard to be machine readable—there are 

prerequisites that either can be taken concurrently, or require instructor’s permission, or 

can be fulfilled by a course from a different department. There are also courses that either 

are offered by arrangement, or have multiple sections offered at the same or different 

periods, or can be taken multiple times. After all, we doubt the rules and regulations can 
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be perfectly modeled by logic without human intervention, at least not with the available 

technology. The best solution would be obtaining native access to ORC database. 
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9. Appendix 

 

The whole project is hosted on GitHub at https://github.com/henrysun918/cloud-nlp. 

Instead of listing source code, the appendix will refer to hosted files. 

 

Hand compiled [baseurl] file: https://github.com/henrysun918/cloud-

nlp/blob/master/offline/data/base_urls 

 

Script to crawl course URL’s from [baseurl]: https://github.com/henrysun918/cloud-

nlp/blob/master/offline/data/mine.sh. The output of the script: 

https://github.com/henrysun918/cloud-nlp/blob/master/offline/data/urls.txt 

 

Script to crawl course data given course URL’s: https://github.com/henrysun918/cloud-

nlp/blob/master/offline/data/load_json.sh. The output of the script: 

https://raw.githubusercontent.com/henrysun918/cloud-nlp/master/offline/data/course.json 

 

Script to extract concept through AlchemyAPI and upload course data in JSON file to 

Parse database: https://github.com/henrysun918/cloud-nlp/blob/master/offline/app.js. 
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