
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

5-1-2015

Course InSight: An Application of Natural Language Processing in Course InSight: An Application of Natural Language Processing in

a Course Browser a Course Browser

Chuanqi Sun
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sun, Chuanqi, "Course InSight: An Application of Natural Language Processing in a Course Browser"
(2015). Dartmouth College Undergraduate Theses. 94.
https://digitalcommons.dartmouth.edu/senior_theses/94

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/94?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

1

Dartmouth Computer Science Technical Report TR2015-770

Course InSight: An Application of

Natural Language Processing in a Course Browser

Chuanqi Sun

Advised by Professor Xia Zhou

1. Abstract

Course inSight integrates a course catalog with natural language processing and cloud

database to provide recommendations based on the concepts extracted from a given course,

revealing meaningful connections between courses that are not available through existing

technologies. This paper justifies the rationale behind the project, narrates the design process, and

discusses implementation details and possible improvements.

2. Introduction

Course election is an integral part of students’ educational experience. It involves decision

makings that can lead students to new realms of knowledge and success in future careers. While

school registrars compile comprehensive catalogs each year to aid the process, students, however,

are often overwhelmed by the enormous amount of course offerings, vexed by the meaning of

course titles, biased by their peers’ word of mouth, and suffered from outdated and impersonal

tools. When well-informed course election becomes impractical, students might simply elect

courses to raise their GPA, reduce workload, and fulfil requirements for graduation. Dartmouth

College, for example, requires students to take classes in a distributive manner, covering nearly all

aspects that the college has to offer. However, this liberal arts ideal is undermined by its execution.

It is well known that students have compiled a “lay-up list” [1]—a list of distributive classes where

nearly everyone gets an “A” without doing much work. In the meanwhile, fraternities at Dartmouth

have allegedly compiled a database of all previous exams for some courses so the members can

easily pass exams without “wasting” their time in libraries. Although these problems can not all

be contributed to an ineffective course election system, it is justified to trace them to the very

beginning of the process, course browsing, where we can possibly take proactive measures to

encourage well-informed course election.

2

3. Existing solutions

The surveyed institutions have strikingly similar course browsers. Stanford [2], MIT [3],

UPenn [4], Dartmouth [5], Princeton [6], Brown [7], and Columbia [8] all share the same design—

a digital catalog indexed by department names or field of studies, searchable by keywords,

instructor name, course title, and course period. Massive Open Online Course platform such as

Coursera [9], Udacity [10], MIT OpenCourseWare [11], and Stanford Online [12] offer more

features including multimedia and social network widgets. All of the aforementioned course

browsers, however, organize courses in the structure of a list, which is what “catalog” by definition

does. In most cases, the course browser is simply a digitized version of the printed catalog. To

summarize, we point out four dangerous assumptions made by the existing solutions:

1. The browser assumes that each user has already come up with a goal to search for,

whether it’s a keyword, a professor’s name, or a course title. The database is indexed

and structured with these search goals in mind but if a user would literally like to

“browse” courses, the tool would be of no help.

2. The browser assumes a linear structure of courses within a department. In most cases,

the default view is sorted by course numbers, which supposedly reflects the progression

in difficulty and the deepening and narrowing of topics. This assumption breaks when

a department organizes its courses according to its own rule. Take the Computer

Science department at Dartmouth for example, the bulk of the courses are divided into

three sections: theories (30-49), systems (50-69), and applications (70-89). In many

cases, students would take a higher numbered course before a lower numbered one.

Sorting these courses into a list according to their numbers would only mislead students.

3. The browser assumes that each department is independent of others. Although many

tools nicely present courses offered by one department, they have to display redundant

language for courses that are “cross-listed” under two or more departments, let alone

the waste of storage and the difficulty in maintaining consistency. As we see more and

more interdisciplinary studies and cross-departmental collaborations, the organization

of courses by department will soon be outdated.

4. The browser assumes that students are the only users and that information flows strictly

from faculty to registrar and then to students. What if faculty would like to get feedback

on their posted courses? What if administration would like to measure faculty’s

performance? What if students would like to know what their peers think of a course?

Admittedly, each school has its own feedback system but instead of asking users to

take surveys and wait for the analysis to surface after much delay, the data could be

collected as soon as the course browsing or shopping period begins and be analyzed

and presented in real time.

3

A successful solution therefore will have to address the following challenges: 1) providing

a guidance for course browsing 2) organizing courses to reflect internal relationships rather than

by numbers 3) presenting courses across departments and disciplines 4) collecting, analyzing, and

presenting user behavioral data.

4. Design

A course browser is essentially a visualization of course-related data. Hence, we tackle the

design problem with a data-driven mindset—what aspects of the data should we present, and how

to present them effectively? The only data source we can leverage is Organization, Regulations,

and Courses (ORC) website [5], which has a catalog of all the courses. On ORC, each course is

archived into a single web page with a URL. The page contains the title of the course, its number,

a paragraph of description, the name of the instructors, the Distributive and/or World Culture

requirements it satisfies, and the term and time period it is offered. The ORC itself does a decent

job presenting these fields of data but in order to guide a user through the massive number of

courses and visualize connections between them, we must “understand” what each course is about.

Once we “understand” the concept of each course, we can establish relationships between courses

sharing similar concepts. We may even allow a user to browse directly from a concept. Therefore

we treat the title of the course and its description as our primary source of data, from which

concepts can be extracted. The goal has now become the visualization of concepts for each course,

and the visualization of concept-based relationship between courses.

To further develop this idea, the browser should present two kinds of entities, courses and

concepts. Things become interesting when there are two or more of these entities on stage: a course

may cover a few concepts; many courses may share the same concept; two courses may cover a

very similar set of concepts; some concept is covered by many courses; some courses cover a broad

range of concepts... All these seemingly complicated relationships can be reduced to one simple

syntax: “course S covers concept T”. If we model a database after this syntax, we can answer all

the questions of interest by a few database operations. For example, to find the courses that are

related to S1, we have the following algorithm:

1. Find all the concepts that S1 covers.

2. For each of the concepts, find all the covering courses.

3. For each of the covering courses, if it has not appeared before, add it to the result and

store the relevance value, otherwise, add the relevance value to the previous result.

4. Sort all the results in descending order of their aggregated relevance value.

Another criterion for relating one course to another is by prerequisites. The ORC displays

the prerequisites for any given course in the format of “course S1 uses S2 as a prerequisite”, but

does not show what courses use the given course as a prerequisite. Since prerequisites are “many

4

to many” relationships, the query from either direction would work. For example, “select all

prerequisites where S1==Sx” yields all the courses that use Sx as a prerequisite. On the other hand,

“select all prerequisites where S2==Sx” yields all the courses that are used by Sx as a prerequisite.

With the underlying data model, we specify the following key features for the browser:

1. The browser shall handle queries on courses using traditional parameters i.e. title,

description, and course number.

2. The browser shall present related concepts for any chosen course.

3. The browser shall present courses covering any chosen concept.

4. The browser shall present relating courses based on prerequisites or shared concepts.

 The most intuitive visualization of these features would be a graph where each course or

concept is represented as a node and each relationship between a course and a concept or between

two courses is represented as an edge. This design is effective only when the number of nodes is

small. As the number of nodes increase, the network will become so dense that it’s neither

computationally affordable nor visually appealing (Figure 1).

Figure 1 – Network Graph1

1 Image credit: Image Credit: http://tallytree.com/wp-content/uploads/2012/07/D3_force_directed_layout.png

5

To address this issue, we propose a dynamic hierarchical data structure where the root node always

represents the course or concept of interest. When the user navigates from a course to a concept,

or vice versa, or from one course to another, the root node is updated to reflect the change. With

this technique, we are able to limit the depth of the hierarchy to a constant number, in which case

a sunburst graph (Figure 2) would be the ideal visualization.

Figure 2 – Sunburst Graph2

5. Implementation

5.1. Data Collection

The ORC organizes the URL’s of the courses into a tree structure with a depth of

3—the home page being the root, each department being a child of the root, and each course

being a child of a department. However, there are exceptions for departments with sub-

departments (e.g. AMEL), and for departments further dividing courses into sections (e.g.

ENGL). Let us denote the following string with [rooturl]

“http://dartmouth.smartcatalogiq.com/en/2014/orc/Departments-Programs-

Undergraduate/”, then there are three possible formats for the URL of a course:

1. [rooturl]/[course number]

2. [rooturl]/[sub department name]/[course number]

3. [rooturl]/[section name]/[course number]

2 Image credit: http://stackoverflow.com/questions/24438313/stop-zooming-or-folding-in-sunburst

6

We can simplify the URL’s into one format: [baseurl]/[course code] where [baseurl] has

the three variations above. Given that there are only 84 unique [baseurl] strings in ORC, it

is faster to collect them by hand than by writing, debugging, and running a script. Once we

obtain the [baseurl], we can use a crawler to visit each base URL and extract course URL’s

from the web page. With URL’s for all the courses, we then use another crawler to

download the pages and extract the course number, title, prerequisite, time period, and

professor from the HTML file and store them in JSON format. Now the data is ready to be

loaded into a database. The complete data collection script is listed in the appendix.

5.2. Database

We use Parse [13] to host the database. Parse is an integrated platform for web

hosting, database, and cloud computing. We will discuss its cloud functions in later

sections. For our application, we maintain 4 tables on Parse:

1. Course: each row stores information about one course: title, number, URL, time

period, professor, distributive requirements, and description.

2. Prerequisite: each row specifies a dependency—one course is used by another as

a prerequisite. We use the pointer data type provided by Parse to link the two

courses in each prerequisite relationship to their corresponding rows in the Course

table.

3. Concept: it stores the concepts relevant to each course, along with a relevance

value. The higher the value, the more relevant the concept is.

4. User Activity: it stores the user behavioral data. It will be discussed in section

5.4 and 5.6.

Parse provides a comprehensive JavaScript API for adding and updating content in a

database. To populate the Course, and Prerequisite tables, we use a node.js application to

iterate the courses and prerequisites in the previously exported JSON file and uploads them

to the database with the JavaScript SDK. The other two tables will be populated in later

steps. The complete upload script is listed in the appendix.

5.3. Concept Extraction

Concept extraction is a well-researched topic in natural languages processing

(NLP). We decide to use AlchemyAPI [14], an online NLP SaaS that parses raw text into

concepts. Note that the NLP algorithm is not perfect so not all concepts are truly relevant

to a course. We will have to use “relevance” value to filter away irrelevant results. When

7

finding a relevant course, we require that two courses share one or more concepts the

relevance values of which add up to a certain threshold. There are 2228 courses in ORC.

If we were to find all courses that share concepts with a given course, we would have to

issue 2227 API calls, which would hit the API cap, not to mention the time it would take

to process them. The solution is preprocessing all the courses to have their concepts

extracted and stored in our database on Parse. Again, we use a node.js application to iterate

the courses in the previously downloaded JSON file, extract the concepts with an npm

package for AlchemyAPI, and uploads the results onto Parse using its SDK.

5.4. Cloud Functions

In a typical JavaScript web application, the client, usually a web browser, is

responsible for computing the data once they are fetched from a database. There will be a

significant penalty on performance when the desired results are only a few rows but the

computation requires the knowledge of the entire table, or worse still, two or more tables.

For example, when we compute the most viewed courses, we have to aggregate user

activity counts on the keyword “course” and rank the results in descending order of the

aggregated counts. Although we could let the database alone handle this complicated query,

it would be very difficult to run customized filters on top of it. But if we download the

entire user activity table to client side and does the computation, the download would take

too long. The cloud function combines the advantages of the two by running JavaScript on

the database server. To get the most viewed activities, we simply call the cloud function

through Parse API, and the result will be returned instantly.

Another use of the cloud function is event handling. Similar to what a “trigger”

does in traditional database, a cloud function can be triggered when a row is added or

updated. In our application, a cloud function is executed after each CREATE or UPDATE

event in the Prerequisite table. The function sets a pointer from a course in Prerequisite

table to its counterpart in the Course table. We also use a cloud function to create a

lowercased copy of a concept when it is added to the database to facilitate search.

5.5. User Interface

We built the front end of this application with D3.js [15] framework. D3.js provides

a set of visualization templates that can be directly applied to arrays of objects in JavaScript,

which in our case can be easily fetched from Parse using its SDK. As we previously

discussed, we use sunburst graph to visualize the dynamic hierarchical structure. Two

different views will be covered:

8

1. Course View (Figure 3)

Figure 3 – Course View

In Course View, the center of the sunburst graph is set to the course of

interest. Surrounding the center are four sections: 1) “Related”: courses that are

related to the course shown in the center. The relationship is determined by shared

concepts. 2) “Topics”: concepts extracted from the course shown in the center. 3)

“Prerequisite”: courses that should be taken prior to the course shown in the center.

4) “Next Steps”: courses that use the course shown in the center as a prerequisite.

The sunburst graph displays the information of interest in a minimalistic view—

only course numbers or concept names are displayed. To compensate the lack of

details, we set up a side panel to display the full length information when user

mouses over certain areas on the sunburst graph (Figure 4). When user clicks on a

course or concept, the graph will be updated to the corresponding view with the

new course or concept in the center.

9

Figure 4 – Course View with side panel

2. Concept View (Figure)

The Concept View is similar to the Course View except that the courses

related to a concept is displayed directly around the central circle. When there are

many courses covering a concept, the surrounding sections will become very

narrow (Figure 5).

Figure 5 – Concept View

10

Again, a side panel is used to display full length information when user mouses

over a course but in order to minimize eye movement, we display the enlarged

course number in the center of the sunburst, a design trick that has already been

adopted in the Nest Learning Thermostat [16].

The application features a search box on the top of the screen in which users can

search either a concept or a course. Powered by typeahead.js [17], the search box updates

results as the user types. We treat the keywords as part of a course title, a course number,

and a concept all at the same time and display all of the results on the same page so the

interface will not confuse the user with complicated search options (Figure 6).

Figure 6 - Search Results

The homepage of the application is composed of the search box previously

described and two word clouds taking up the rest of the screen (Figure 7). When the user

mouses over a course or a concept, the word is enlarged as a visual feedback of selection.

Once clicked, the word will take the user to the corresponding Course View or Concept

View. The word clouds are generated with a D3.js plug-in using the most popular courses

and concepts. The popularity is determined by recorded user activity, which we will discuss

the next.

11

Figure 7 - Homepage

5.6. Telemetries

Two kinds of behavioral data are collected. Search and exploration. When a user

transitions into a course or a concept from the search box, a search activity is logged along

with the keyword that is used in the search and the time of event. If the transition originates

from a word cloud or from an existing sunburst graph, an exploration activity is logged

along with the course name or the concept name and the time of event. On one hand, this

unobtrusive technique of data collection has completely freed the users from filling out

forms and revealing private information. On the other hand, the data collected is limited to

crowd behaviors. If individual behavior needs to be collected, we will have to establish

user profiles.

6. Conclusion and Future Work

This project is a comprehensive exercise of data mining strategies, database design,

cloud computing, natural language processing and UI/UX designing. The outcome is a user

friendly web portal hosted at dartmouth.parseapp.com. The portal helps students find

courses based on their interests and achieve insights in how one course will lead to another.

Thanks to cloud hosting and cloud computing technologies, this project can be deployed

without the requirement of a dedicated web server or database host. The user interface is

loosely coupled with the backend by API calls so it adapts well to other course databases.

We identify the following aspects of the project that can be improved by future work.

http://dartmouth.parseapp.com/

12

6.1. User Profiling

In the current version of the application, each user remains anonymous throughout

the whole session. Establishing a profile for each user would benefit not only the users by

enabling browsing history, bookmarks on favorite courses, and sharing findings on social

network, but also the faculty and administration by providing individual and yet

anonymous behavior for further analysis and revealing patterns and trend during course

election. Above all, telemetry with profiled users is more accurate and representative. To

establish user profiling, the database needs to be upgraded to include a user table. The

application needs to include a login and logout function, as well as session management.

An ideal solution would integrate into a Single Sign-on system (SSO) that a school

usually provides. The benefit of using SSO is 1) hassle-free identity management because

profiles can be pulled directly from school directory 2) better access control because the

school has full control over what content can be viewed by student, faculty, and

administration.

6.2. Database Auto-maintenance

As described in 5.1 and 5.2, the Course and Concept tables are populated by one-

time data crawled from ORC. Whenever ORC updates, the crawler has to run again, after

which the tables have to be dropped and re-populated. The user activities may also

introduce inconsistency if an old course in the activity no longer exists in the new ORC

website. The proposed solution is running a crawler that periodically check for updates on

ORC. If a course changes, a series of actions are triggered to maintain the integrity of the

data. The auto-maintenance can be implemented with a combination of crawler scripts for

downloading course pages, node.js scripts for finding changes and uploading changes, and

Parse cloud functions for maintaining integrity.

6.3. Search Filters

Existing course browsers usually support various filters to help users narrow down

the results. ORC website, for example, allows users to filter by term, time period,

department, distributive requirement, and world culture requirement. The major challenge

in implementing these filters is building a robust HTML parser that can handle various

mistakes on ORC when converting HTML into numerical or enum types. Even with a

perfect parser, the language on ORC is too haphazard to be machine readable—there are

prerequisites that either can be taken concurrently, or require instructor’s permission, or

can be fulfilled by a course from a different department. There are also courses that either

are offered by arrangement, or have multiple sections offered at the same or different

periods, or can be taken multiple times. After all, we doubt the rules and regulations can

13

be perfectly modeled by logic without human intervention, at least not with the available

technology. The best solution would be obtaining native access to ORC database.

7. Acknowledgement

I would like to extend my deepest gratitude to my thesis advisor Professor Xia Zhou

for offering invaluable suggestions and guidance in the course of this project. I also thank

Professor Devin Balkcom and Computer Science Department administrator Joseph Elsener

for their timely help in logistics. In the meanwhile, I thank all the people who tested the

application during the early stage and gave me constructive feedback through social media

or in person. For any questions, please contact the author at henrysun918@gmail.com.

8. References

[1] J. Asch, "The Layup List," 8 2 2013. [Online]. Available: http://www.dartblog.com/data/2013/02/010644.php.

[2] "Stanford Bulletin EXPLORE COURSES," [Online]. Available: https://explorecourses.stanford.edu/.

[Accessed 3 5 2015].

[3] "MIT Course Picker," [Online]. Available: https://picker.mit.edu/. [Accessed 3 5 2015].

[4] P. Labs, "PENN COURSE REVIEW," [Online]. Available: https://penncoursereview.com/. [Accessed 3 5

2015].

[5] "Organization, Regulations, and Courses 2014," [Online]. Available:

http://dartmouth.smartcatalogiq.com/en/2014/orc/Departments-Programs-Undergraduate. [Accessed 3 5

2015].

[6] "Office of the Registrar Course Offerings," [Online]. Available: https://registrar.princeton.edu/course-

offerings/. [Accessed 3 5 2015].

[7] "Brown University Courses," [Online]. Available: https://courses.brown.edu/. [Accessed 3 5 2015].

[8] "Columbia University Directory of Classes," [Online]. Available: http://www.columbia.edu/cu/bulletin/uwb/.

[Accessed 3 5 2015].

[9] "Coursera," Coursera Inc., [Online]. Available: https://www.coursera.org/courses. [Accessed 3 5 2015].

[10] "Nanodegrees and Courses," Udacity, Inc., [Online]. Available: https://www.udacity.com/courses/all.

[Accessed 3 5 2015].

[11] "Courses," Massachusetts Institute of Technology, [Online]. Available: http://ocw.mit.edu/courses/. [Accessed

3 5 2015].

[12] "Standord ONLINE UPCOMING & IN SESSION," Stanford University, [Online]. Available:

http://online.stanford.edu/courses. [Accessed 3 5 2015].

[13] "Parse," Parse, [Online]. Available: https://parse.com/. [Accessed 3 5 2015].

[14] "Powering the New AI Economy," AlchemyAPI, Inc., [Online]. Available: http://www.alchemyapi.com/.

[Accessed 3 5 2015].

[15] M. Bostock, "D3 Data-Driven Documents," [Online]. Available: http://d3js.org/. [Accessed 3 5 2015].

[16] M. Rogers, "What’s in the 4.3 software update," Nest Labs, 4 11 2014. [Online]. Available:

https://nest.com/blog/2014/11/04/whats-in-the-4-3-software-update/.

[17] "typeahead.js," Twitter, Inc., [Online]. Available: https://twitter.github.io/typeahead.js/. [Accessed 3 5 2015].

mailto:henrysun918@gmail.com

14

9. Appendix

The whole project is hosted on GitHub at https://github.com/henrysun918/cloud-nlp.

Instead of listing source code, the appendix will refer to hosted files.

Hand compiled [baseurl] file: https://github.com/henrysun918/cloud-

nlp/blob/master/offline/data/base_urls

Script to crawl course URL’s from [baseurl]: https://github.com/henrysun918/cloud-

nlp/blob/master/offline/data/mine.sh. The output of the script:

https://github.com/henrysun918/cloud-nlp/blob/master/offline/data/urls.txt

Script to crawl course data given course URL’s: https://github.com/henrysun918/cloud-

nlp/blob/master/offline/data/load_json.sh. The output of the script:

https://raw.githubusercontent.com/henrysun918/cloud-nlp/master/offline/data/course.json

Script to extract concept through AlchemyAPI and upload course data in JSON file to

Parse database: https://github.com/henrysun918/cloud-nlp/blob/master/offline/app.js.

https://github.com/henrysun918/cloud-nlp
https://github.com/henrysun918/cloud-nlp/blob/master/offline/data/base_urls
https://github.com/henrysun918/cloud-nlp/blob/master/offline/data/base_urls
https://github.com/henrysun918/cloud-nlp/blob/master/offline/data/mine.sh
https://github.com/henrysun918/cloud-nlp/blob/master/offline/data/mine.sh
https://github.com/henrysun918/cloud-nlp/blob/master/offline/data/urls.txt
https://github.com/henrysun918/cloud-nlp/blob/master/offline/data/load_json.sh
https://github.com/henrysun918/cloud-nlp/blob/master/offline/data/load_json.sh
https://raw.githubusercontent.com/henrysun918/cloud-nlp/master/offline/data/course.json
https://github.com/henrysun918/cloud-nlp/blob/master/offline/app.js

	Course InSight: An Application of Natural Language Processing in a Course Browser
	Recommended Citation

	tmp.1596484807.pdf.Vk_ul

